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When Does a Quantum Field Theory
Describe Particles?*

By
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Abstract. We give a criterion which has to be satisfied in a Quantum Field
Theory in order to allow a complete particle interpretation of the theory. The
notion of "essentially localized states" in Field Theory is re-examined.

I. Introduction

The usually accepted postulates of relativistic quantum field theory,
namely Lorentz invariance, local commutativity, causality, and the
structure of the energy-momentum spectrum are not sufficient to ensure
an interpretation of physical states entirely in terms of asymptotic
particle configurations. This fact is demonstrated by the well known
example of a generalized free field with continuous weight function [1].
This model satisfies all the above requirements if the weight function is
suitably chosen*** yet it does not allow a complete particle interpreta-
tion.

It is the purpose of this paper to suggest a possible criterion that
would distinguish between field theories with and without particle inter-
pretation.

This criterion is a generalization to relativistic quantum field theo-
ries of the old quantum mechanical argument: the number of quantum
states of a particle in a finite phase space volume Ω is finite, namely Ωjhz.

Pursuing for the moment an intuitive argument one would expect
that in a theory with short range forces and particle interpretation a
physical state which at time t ~ 0 is essentially localized in a finite
region of space and has limited energy will quickly evolve into a state
described by a configuration of essentially non-interacting particles,
finite in number and still localized in a finite space volume with finite
energy.

* Supported in part by the National Science Foundation.
** On leave of absence from University of Sao Paulo, Brazil.

*** Lorentz invariance, local commutativity and the energy momentum spectrum
are immediately evident. "Primitive causality" is violated if the weight function
does not decrease rapidly enough for large mass values [2] but is satisfied for models
with a fast decreasing weight function [3].
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Therefore, according to the earlier heuristic argument there should
be only a finite number of linearly independent states which are localized
at t = 0 in any given finite space region and have energy below any
given value Emax.

Having thus put forth the heuristic basis for our criterion we will
give its field theoretical formulation.

One of the difficulties that must be overcome is that in a relativistic
field theory it is not possible to define a class of states strictly localized
in a finite region of space within a given time interval if we want to keep
all the properties which one would like to associate with the notion of
localization, as it is familiar from non-relativistic quantum mechanics.

Specifically, if one wants to define the set of states which are localized
in the 3-dimensional space volume V during the time interval t± < t < t2

one might be tempted to identify it with the subspace ^v,tut2 which
is obtained by applying the algebra R(Θ) [2], [4] associated with the
space-time region

(P x ζ F ; t1<xQ<t2

on the vacuum state |0). This is, however, impossible because it turns
out that ^V)tut2 is n °t a subspace but the whole Hubert space. This
fact has first been demonstrated by SCHLIEDER and REEH [5]. It has
been suggested by KNIGHT [6] that one should not apply the whole
algebra R (Θ) but only its unitary operators to the vacuum in order to
obtain localized states. This is a workable definition and very similar
in fact to the one we shall adopt and try to justify in Section II. It means,
however, that the ''localized states" do not form a linear space.

If one takes the set of all ζ'localized" states in a region Θ and projects
out those with energy less than 2£max, one would expect, that in theories
with short range forces and particle interpretation one obtains an
"essentially" finite set of linearly independent vectors. More precisely
one would expect that the resulting set of vectors contains only a finite
number of orthogonal vectors with norm larger than an arbitrary given
number. In other words, this set of vectors should be contained in a
(strongly) compact subset of the Hubert space.

We formulate the compactness criterion in Section III and show in
Section IV that it is satisfied for the free field theory and is not satisfied for
a generalized free field theory with continuous weight function, i.e.,
for the situation in which there exists no particle interpretation.

Thus, loosely speaking the criterion is satisfied if and only if a theory
has the same "number of degrees of freedom" as a free field theory.
However, we shall not in the present paper attempt to elaborate on this
point and we cannot show here that the compactness criterion will
always ensure a complete particle interpretation.
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II. Localization of States

Let Θ be a finite space-time region, R (Θ) the associated ring of bounded
operators, |0) the vacuum state. We consider the subset Sr(Θ) of ope-
rators Q with the properties

<0|Q|0> = 0 (1)

«QII^*"1IG|
and the corresponding subset of states

(2)

Here κ is the smallest mass in the theory and r an arbitrary length. We
show now that the states of *Jίr(Θ) have a number of properties which
allow us to picture them intuitively as being essentially localized in
the region Θ + x with |x| < r, x0 = 0.

The first of these properties is the following. Let Θx and (P2 be two regions
which are situated space-like to each other and let us use as a measure
of their separation the largest time-displacement τ which can be ap-
plied in positive and negative directions to the region 02 without any
of its points entering into a time-like situation to some point of Θv

Then, if ψ £ Jfr(Θ2) and Φ ^Jfrψύ

| < Φ , y > | < 2 | | Φ | | | | ! P | | e ^ y ( » τ ) (3)

where φ is a function which decreases exponentially for large argument
(see estimate below). The estimate (3) shows that the two states are
very nearly orthogonal if τ — 2r is larger than a few Compton lengths.

To prove (3) we may use a method developed by RUELLE [7] and
ARAKI [4]. Let J' (ω) be an infinitely diίferentiable function with support
in the interval — κ < ω < κ, and

fϊ'(ω)dω=l. (4)
Define

/(ω)= ff'(ω')dω', (5)

fγ(t) = (2π)-1ff(ω)e-iωt-yωdω (6)

/ ( ί ) = l i m / y ( ί ) . (7)

Note that f(ω) is infinitely often differentiable everywhere, it vanishes
for ω < — κ and has the constant value 1 for ω > κ. For t Φ 0 we find

Of) = (2πit)~1 f J' (ω) e~iωt dω . (8)

It is immediately seen therefore, that |/(ί)| decreases faster than any
power of t. Now, if Q is any operator with (01Q \ 0) = 0, let Q (t) be its
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time translate and Q(f) = J Q(t) f(t)dt. We have, due to the gap of
size κ in the energy spectrum,

= O. (9)

Therefore, if Q1 ζ £ r (0J and Q2 ζ Srψ2) we get

= I <o[Ql 0a(0]|o>/(0 dt ^ 2 nρj ||ρa | | / f(t) dt.
|ί|>τ |ί|>τ

If Ψ = Q110>, Φ = Q210> and if the Qt satisfy (1), then the inequality (10)
coincides with (3) if we define

<p(*τ) = inf I ff(t)dt\ (11)
|«|>r

where the symbol inf means that we can choose for every τ that func-
tion / within the class specified above which gives the smallest value of ψ.

We shall not attempt here to get the optimal estimate for φ but
consider only a simple family of trial functions / which suffices to show
that φ is exponentially decreasing. Choosing the length scale so that κ = 1
we use

/'(ω) = i^-1 exp - 0(1 - ω 2 )" 1 for - 1 ^ ω ^ 1

i (12)
0(1 - ωη^dω .

We calculate f(t) by equation (8) using the fact that the integrand is an
analytic function of ω in the whole plane except for the essential sin-
gularities at the end points of integration. The integrand of (8) has
two sharp maxima (saddle points) within the unit circle. Deforming
the path of integration to pass over these saddle points and using the
simple estimate

N > (2/(?)V3 exp ^ J ^ g ] (13)

for the normalization integral, one finds that the optimal choice of 0

is 0 = 3/8 γ2t9 yielding for |*| > 3

|/«|<-2]^exp[-*/2)/2]. (14)

Thus, for κ τ > 3

φ (κτ) < exp [- κτ/2 j/2] . (15)

For the simple family of functions (12) the estimate (15) is about optimal.
But one would expect that it can be improved to

φ {κτ) < A exp [- κτ] (15')

by a better choice of /.
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Property (3) is not yet a sufficient criterion for localized states.
If it were, we could replace (1) by the weaker requirement

W\o)i<*«iQ\oyι. (16)
We must, however, also guarantee that a state Φ which is localized in (9X

is almost orthogonal to any "multiply localized" state Ψ, even if one of
the localization centers of Ψ lies in Θx. I t suffices to consider a state of
the form

Ψ=QΊQz\o) (17)

with Q[ ^8r{Θ-s), Q2 ζ$ r (0 2 ) where Θ2 has the separation τ (see above)
from 0J*. In this case we get by the previous method

;, ρ 2 ( ί ) ] i o> /(<) c*<

Again we can replace ||Qi|| by eκr \Φ\ due to (1). Also

\\QΊUQA<e"r'W\\ (19)
with r' = 2r if τ > r. This follows from

/
|ί|>τ

if T is large enough, so that the first term in the bracket is bigger than
the second. This is inequality (19) with

eκr' = (β-4«r _ ^( κ r ) )- l/2 (20)

or
/ - > 2 r for large T . (20')

The scalar product between the 2-fold localized state Ψ and the singly
localized state Φ is then, due to (18)

|<Φ, Ψ)\ < 2β*<f+ r'> ||Φ|| ll^ll φ(κτ) . (21)

More generally, we say that a state Ψ has % localization centers,
situated in the regions Θt (i = 1 . . . n) if

Ψ= 776,10); Q,ζ«,((?,) (22)
1

and if the minimal separation τ of any two regions Φ{ is large compared
to r and κ"1. In that case we have

Am < A\\Ψ\\ (23)
1

* Such a state will be called "doubly localized".
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with A depending only on r and τ. If we take the scalar product of two
such states whose localization centers are respectively in the regions
Θi (i = 1 . . . m) and Θj (j — 1 . . . n) then we find

|<Φ, F>| < ̂ ' | | Φ | | | |¥Ί 9φτ) (24)
where

τ = sup inf τiό (25)
j %

and Tij is the separation between Φι and Θj.
There remain the following two questions:
1) Does the set <Jίr(Θ) contain essentially all localized states in Θ ?
2) How can the localized states be characterized, if instead of the

ring of bounded operators R(Φ) we want to work with the unbounded
operators (Wightman polynomials) which result from "smeared out"
fields ?

A proposal concerning the second question has recently been made
by SCHLIEDER [8]. We shall examine both questions together by using
a criterion for localization which has first been proposed by KNIGHT and
TOLL [6].

If Ψ is localized in Θ and Q ζ ϋ?($i) where Φ1 is (space-like) far sepa-
rated from Φ, then the expectation value of Q in Ψ should differ very
little from the vacuum expectation value. We demand, if τ is the se-
paration between Φ and Φx and if \Ψ\ = 1

\{Ψ\Q\Ψ) - <0|Q|0>| < 2c«ρ|| ψ(κτ) . (26)

where c is some fixed positive number. This criterion, demanded for
arbitrary Φx and arbitrary Q ξβ, (0X) should be necessary as well as sufficient
for localization. Suppose now that

Ψ=A\$) (27)

where A is a (possibly unbounded) operator associated with the ring
R(Φ). In particular A could be a Wightman polynomial with test func-
tions having support in Φ. We denote the set of all operators which are
associated with R(Φ) by &(Φ). Note that the choice

Aζ&ψ) (28)

imposes essentially no restriction on Ψ because of the theorem by
SCHLIEDER and R E E H [5]. Since we want Ψ to be normalized we have

By the previously described method and the use of local commutativity
the left hand side of (26) is brought into the form

, Q(t)]\O) f(t) dt < 2\\A^A |0>|| ||Q|| <p{xτ) ./
\t\>x

Thus the criterion (26) requires

Commun. math. Phys., Vol. 1 21
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If, as previously, we consider also states which are not normalized we
are led to the set ^V'C{Θ) consisting of vectors Ψ = A | 0) with

( 2 9 )

We shall show now that the set «WC(Θ) is simply related to the sets
^£T(Θ). If we make a polar decomposition

A = TH (30)

where T is isometric, H Hermitian and positive semi-definite, then

A*A = H*, Hζ&>(Φ), (31)

and condition (29) becomes

< 0 1 # 4 | 0 > < C 2 < 0 | # 2 | 0 > 2 . (32)

Suppose now, we replace A by

B = TPλH (33)

where Pλ is the spectral projection operator of H which annihilates the
part of Hubert space belonging to spectral values of H greater than λ.
Then B is a bounded operator with

\\B\\ = λ

and we have

Thus, according to condition (32)

\\(A-B)\0)\\<^\\Ψ\\*. (34)

Putting B\0) = Φ, jφir = exr we have

^) (35)

^ p (36)

for eκτ > 4 c. Thus a state in JVQ (Θ) can be approximated as

Ψ=γ\Q}+Ψ'', Ψ'ίJίrψ) (37)

up to a relative error of magnitude 2ce~κr.
It is not so simple to compare the sets Jίr{Θ) or JfC{Θ) to those

sets which SCHLIEDER [8] defines as localized states in a Wightman
Theory. In the first place, SCHLIEDER restricts simultaneously the mo-
mentum of the state and its space extension. But even when we apply
an energy projection on ΛT(Θ) the resulting set is still larger than the
corresponding Schlieder set. The former is noncompact in the case of
the generalized free field (section IV), the latter is compact [8]. We
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have tried to demonstrate above that every vector in Jίr{Θ) can be
interpreted as an essentially localized state. Therefore our present opinion
is that the conditions imposed by Schlieder are sufficient but not al-
ways necessary for localization.

III. The Compactness Criterion

A state of energy less than E can have at most E\κ particles. If it
were strictly localized during some time interval in a 3-dimensional
volume V = fjj the phase volume would be roughly

N(E, r0) = (Erof
El* (38)

and, with % — 1, this should again be the dimension of the subspace of
yf in which such states lie.

Our discussion in the last section shows that we are never dealing
with strictly localized states, but that a state in *Jίr(Θ) has a probability
of order φ (κτ) to extend beyond a sphere of radius r0 -f r -j~ τ.

Consider now the set of vectors

ΨζPsJtr(Θ) , \\Ψ\\<1, (39)

where PE is the projection operator to energy values less than E. If rQ

or r are not too small we may expect that the localization properties of
the state are not significantly affected by the application of PE. Actually
there is some delocalization due to the energy projection. This can be
minimized by using for PE not a sharp energy projection but a smooth
energy "cut off". The following detailed estimates [e. g.5 eq. (44)] are true
only for a smooth cut off but the compactness criteria will be relevant
even for a sharp projection.

Because of the lack of strict localization the set (39) does not lie
in a finite dimensional subspace. However we may define an approxi-
mate dimension in the following way. For any fixed N we choose the
"best" N-dimensional space J^N so that the maximal orthogonal distance
of the vectors in (39) from^f^ i s a s small as possible. This quantity,
the thickness of the set (39) perpendicular do the best J^N, will be de-
noted by dN. As N increases, dN decreases. From the argument above
we get the implicit relation for the set (39)

dN = φ{κτ); N = N(E\ ro+r+τ)™ [E{r0 +r+ τ)fEl* . (40)

For τ >> r -f~ r0 and φ given by (15') we have

dN « exp - [(κjE) N*IZE] . (41)

A very similar estimate can be made, if <JίT in (39) is replaced by
Jf c. Apart from numerical factors we only have to replace r by κ~λ logc.
Finally we may consider the set of vectors

(42)
21*
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Again one finds a similar estimate for the thickness dN:

dN ^ 2 exp - [κβE N*I*E]. (43)

The theory of approximate dimension, expressed in terms of the
relation between dN and N has been extensively studied in the mathe-
matical literature*. We are here concerned with bounded sets of vectors
in Hubert space for which dN decreases exponentiaΠy with some power
of N. Such sets are compact in the norm topology. We summarize:

Criterion: In a Quantum Field Theory with minimal mass κ the sets
(39), (42) should be compact in order to allow a particle interpretation.
The thickness dN should decrease with N like**

dN < a er*^ (44)

where α and β are of order κjE.
The same applies to the sets

Ψ=PEA\0), with \\AiA\oy\\<hA£&(0) (45)
and

Ψ=PEjrc(φ)} with \\Ψ\\<1. (46)

IV. Discussion of two Simple Models

We show here that the criteria of the last section are satisfied in
the theory of a scalar free field and that they are not satisfied in a genera-
lized free field with continuous, fast decreasing weight function. Thus — at
least in the simple models — the criteria serve to differentiate between
a situation in which a particle interpretation is possible and one in which
it is impossible. If suffices to investigate the compactness of the set (42)
since the other three sets are simply related to (42).

a) The free-field A (x)

Let us take for Θ the double cone which has a its base the 3-dimen-
sional sphere of radius r around the origin at t = 0. We shall use the
canonical creation and destruction operators at time zero which are
denoted by α^(x) and a(x) respectively. They are related to the field by

α(x) = / [ΔV*(x- γ)A(γ, 0) + ίj-'/»(* - y)-^- (y, 0)] d«y (47)

with the improper functions

x) =~ψ(2π)-3 ίck^+mη^^e^Vk. (48)

Consider a state vector

Ψ=Q\0} with QζR(@), \\Q\\<1, <0|Q|0> = 0 . (49)

* We are indebted to D. KASTLBR and M. ZERNER for an exposition of this
subject. See e.g., [9], [10].

** This estimate is true only if PE is a smooth cut-off.
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We may express Ψ in terms of its Newton-Wigner wave functions

/<n>(x! . .xΛ) at time t = 0.

Ψ = f /<*> (x) a! (x)d*x + -φ=-f /W (xl5 x2) α* (χ2) a* (x2) X

X d 8 ^ <Z3a;2 + |0>

Choosing some radius E ) > r we decompose the wave functions into

/<«) = g(n) + fc(n) (51)

where

fir<») (X l . . . Xn) = J7Θ(S - |x,|) /<"' (Xj . . . Xj (52)
i

vanishes if any argument x$ is outside of the sphere with radius R.
There are two main steps in the proof of the compactness criterion:
1) Show that

/ |λ<»>|2 d*x1 d3xn < Anm e~*™R (53)

where An is independent of the choice of Q.
2) Show that the operator in the w-particle subspace

^,i?=^/7θ(β-|xi|) (54)
i

is a compact operator.
The first statement is very similar to the results of section II and it

may suffice here to sketch the proof for /ί1). We have, for \x\ > r -\- d,
neglecting numerical factors

= <0|[α(x),ρ]|0>
}

Due to local commutativity we can replace the functions Δ ± 1 / 2 above

by
of (x - y) = zJ ± 1 / 2 (x - y) 0(|x - y| - d) (56)

where θ is a function which has the constant value 1 for positive argument,
vanishes for argument smaller than — ε and rises in a smooth manner
from 0 to 1 in the interval [— ε, 0]. The σ^ are smooth functions and one
easily can get the following estimate for their Fourier transforms

Therefore the vectors

fσ{

d

+)(x-y)A(y,0)d*y\0) and /cr<->(x - y) Λ(y, 0) <Py\0) (58)

are well defined and have norms smaller than C de~md. This gives us the
estimate

\fM(x)\<4C'\\Q\\de-™d; d = \x\ - r . (59)

Since \\Q\\ < 1 we get the uniform estimate (53) for the case of f^K
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The second statement is most easily verified by writting the operator
KEtR as an integral kernel K^ . . . xn; x{ . . . x )̂ and showing that it is
of Hilbert-Schmidt type i.e.

/ \K\2 dsx{ dzx[ < oo . (60)

With these two results the compactness of the set (42) can be de-
monstrated in the following way. Choosing an arbitrary ε > 0 we want
to show that a family of vectors ψt in the set such that

W< - Ψ,l > e
can only have a finite number of members. In other words, we want to
show that it is impossible to choose an infinite number of Qι satisfying
(49) such that

| | ^ ( f t ~ ^ ) | 0 > | | > ε . (61)

Note that the expansion (50) of the vectors PEQΪ\Q} terminates at
n m Ejm due to the energy projection. Making the decomposition (51)
we have

PEQi\0y = KS9RΦi+Xi (62)

where flφj ^ 1 and || XJ < AR2e-mR. Choosing R big enough so that

AR2e-™R<~9 (63)

equation (61) demands

Φi)\\>^ (64)

Since K is a compact operator and | |ΦJ <g 1 there can be only finite
families of vectors Φi satisfying (64).

b) Generalized Free Field

A generalized free field is characterized by its Lehmann weight ρ(κ2).
We treat here the case where ρ is a smooth function with support in a
finite interval κ1 < κ < κ2. Symbolically the field A (x) can be written as

A (x) = / ρV2 (κ2) A {x κ2) dκ2 (65)

where A(x; κ2) has the commutation relations and equations of motion
of an ordinary free field with mass κ:

[A(x; κ 2 ) , A ( y ; κ ' 2 ) ] = δ ( κ 2 - κ ' 2 ) Δ ( x - y , x ) , (66)

(Π -κ2)A{x;κ2) = 0 . (67)

As in the case of the free field A (x) can be decomposed into

A{x) = Al+)(x) + A<-){x) (68)

where A(+) is the creation part (negative frequency part, ) A(~) the de-
struction part (positive frequency part). Correspondingly the Hubert
space can be decomposed into a direct sum of orthogonal subspaces
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(k) where Jj?(k) results from the application of h creation operators
on the vacuum. tffW may be called the k-quantum part of the Hubert
space.

We choose now one fixed test function f(x) with support in a finite
region Θ and a set of polynomials Pn of one variable (to be specified
below) and consider the sequence of operators* [with / (x) and Pn real]

Clearly the operator Qn — eίBn has norm one and belongs to E(Θ).
Since

e*Bn I 0> = e-i/2<o|^| o) eiB^ Q) (ggj

we find that the one-quantum component of Qn | 0) is given by

y n = iβ-i/2<o|3ϊlo> J ^ j o ) . (70)

We can choose the polynomials Pn so that

(0\BnBm\0)=δnm

i.e. that the ψn are mutually orthogonal and of equal length. This requires
that we choose the Pn as orthogonal polynomials with respect to the
measure

ρ'(»a) = ρ(»a)flr(»a) (71)
with

σ{κ2) = / (p2 + κ2)-V2 |/(P, (P2 + κ2)i/2|2 dzp . (72)

In other words we define the Pn by

/ Pn (κη Pm (κη Q' (X2) dκ* = δnm . (73)

If PE is an energy projection, the family of vectors

Φn^PβQnlO) (74)

will be in the set (42) and since PE transforms each w-quantum subspace
into itself we have

IΦn - ΦJ > IPE(Ψn - Ψm)\\ = Δ n m . (75)

We want to show now that Δnm is larger than some finite positive ε for
all pairs n, m. One has

Δnm = e-1 / e («2) a' (κ^ (Pn - Pnf dκ* (76)
with

σ' (κη = / (p2 + ««)-va |/(p, (p« + κψψ d*p . (77)
(V2 + «2) < E*

Comparing (77) and (72) we see that one can find a positive constant C
such that

a' {κ2) >Cσ {κ*) for κ\ < κ* < E* - A2 . (78)

* This sequence was suggested to us by D. W. ROBINSON.
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The constant C depends of course on λ and goes to zero for λ -> 0.

Choosing for the moment E > κ2 one finds

Δnm >e-1Cf ρ'(κη \Pn - Pmψ dκ* > 2er^C . (79)

Thus for E > κ2 one can find an infinite family of vectors in the set (42)

for which Δnm > C > 0. In other words the set is not compact in this

model. The choise of E > κ2 was made to simplify the proof. Our result

still holds for E < κ2 since one can approach Φn = eίDn |0) with

A, = / ρVa(κ*) A (x, κ2) Pf

n({J) f(x) d*x dκ* (80)

by
N(n,ε)

with arbitrary accuracy ε

\\Φ« - X»|| < ε (81)

and therefore one could have started from Φn instead of Qn\0} in our

previous proof. Thus one would have found | |P#(Φ n — Φm)| | > G as

long as E > κ\ — A2 and choosing ε = (7/4

\\pE(xn- xm)\\>q2 (82)

which shows that the set (42) is not compact for arbitrary E in this model.
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